A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer.

نویسندگان

  • Nan Nan Xia
  • Xiao Min Xiong
  • Junhu Wang
  • Min Zhi Rong
  • Ming Qiu Zhang
چکیده

In this work, water triggered dynamic catechol-Fe3+ coordinate bonds are revealed and studied at atomic, molecular and macroscopic levels using Mössbauer spectroscopy, rheological analysis, etc. DOPA-iron complexation is found to be dynamic in the presence of water, and this dynamic manner is immobilized after removing water. Accordingly, a water saturated lipophilic polymer containing catechol-Fe3+ crosslinks, rather than the dry version, exhibits dynamic coordination-dissociation behavior. In addition, a migration of iron proves to be enabled in the catechol-Fe3+ crosslinked polymer immersed in seawater. Rearrangement of the dynamic catechol-Fe3+ coordinate bonds among different molecules is thus favored. Based on these results, we develop a bulk lipophilic polymer solid capable of repeated autonomic recovery of strength in seawater without manual intervention. When the polymer is damaged in seawater, reshuffling of the mobile hyperbranched polymer networks across the crack interface, owing to the dynamic catechol-Fe3+ crosslinkages activated by the alkaline circumstances, rebinds the damaged site. By taking advantage of the same mechanism, the polymer can be remolded with the help of seawater and this recycled polymer is still self-healable in seawater. Unlike in the case of conventional polymers where water would shield macromolecules from interacting, here, seawater is a necessary environmental assistant for the material interaction to take effect. The outcomes are beneficial for deepening the understanding of coordinate bonds, and the development of robust underwater self-healing lipophilic polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer† †Electronic supplementary information (ESI) available: Route of synthesis, details of characterization methods, and results of structure and property measurements. See DOI: 10.1039/c5sc03483c

Key Laboratory for Polymeric Composite Education, GD HPPC Lab, School of Che Yat-Sen University, Guangzhou 510275, C [email protected] School of Physics and Engineering, Sun Yat-S Mössbauer Effect Data Center & Laborato Aerospace, Dalian Institute of Chemical Phy † Electronic supplementary information details of characterization methods, an measurements. See DOI: 10.1039/c5sc034 Cite this...

متن کامل

Incremental explosive analysis and its application to performance-based assessment of stiffened and unstiffened plates

In this paper, the dynamic behavior of square plates with various thicknesses and stiffening configurations subjected to underwater explosion (UNDEX) are evaluated through a relatively novel approach which is called Incremental Explosive Analysis (IEA). The IEA estimates the different limit-states and deterministic assessment of plats’ behavior, considering uncertainty of loading conditions and...

متن کامل

A Facile Approach of Thin Film Coating Consisted of Hydrophobic Titanium Dioxide over Polypropylene Membrane for Membrane Distillation

In this work, the hydrophobic modification of TiO2 nanoparticles (HTiO2) was carried out by reacting with dodecylphosphonic acid (DDPA) and hexylamine solution. A facile approach of the self-assembly technique was used for the coating of hydrophobic HTiO2 layer over the microporous polypropylene (PP) membrane. The self-assembled layer was formed between the interface of trimesoyl chloride (TMC)...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2016